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Abstract

This project investigates the use of mobile sinks in wireless sensor networks.

It focuses on three different transfer methods - Single Acknowledgement, Double

Buffered and Sliding Window. The Single Acknowledgement transfer method is a

naive method which acknowledges every packet it receives. The Double Buffered

method keeps the same transfer protocol but reduces transfer times by perform-

ing time intensive data preparation in advance. The Sliding Window method is a

variation of the TCP cumulative acknowledgement sliding window which only uses

one timer. The project also proposes a way to select with which node a mobile

sink is likely to have the longest connectivity based on several RSSI values taken

over a period of time. All of the methods presented in this project are designed to

be integrated into the WildSensing project which focuses on monitoring badgers in

Wytham Woods, Oxford, UK.

Keywords: Wireless Sensor Network, uIP, Mobile Sink, Transmission Quality, Node

Selection.
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Introduction

Current approaches to gathering data for the purposes of wildlife monitoring and

conservation are labour intensive, forcing researchers to collect data from each sensor

placed in an area of interest. The WildSensing project of Oxford and Cambridge

Universities aims to reduce the labour intensiveness of this task by creating a wireless

sensor network which will be able to gather data about how the micro-climatic

changes affect the movements of badgers and aggregate all of the relevant data on

a few storage nodes in the network which will be able to transfer data to mobile

devices carried by researchers in the area.

This project will integrate into the WildSensing project by building a basic sys-

tem - called a mobile sink - which will be able to wirelessly gather data from storage

nodes in the wireless sensor network. There are three main areas of development in

such systems: routing algorithms, selection of storage nodes and transfer methods

between storage nodes and mobile sinks. The aim of this project is to develop a

fast, reliable transfer method for use in such a system whilst building a platform for

future development on the former two areas. The project will explore three differ-

ent transfer methods which will be referred to as Single Acknowledgement, Double

Buffering and Sliding Window.

The transfer methods put forward by this project are designed to gather the

data reliably from the storage node over what could potentially be a very lossy

connection whilst at the same time having the smallest possible memory footprint on

the embedded systems being used. The methods are also compared and contrasted

in this project to determine which ones fare better in real world environments and

why. The metric chosen to measure the implemented methods is throughput1. This
1The rate of data being transferred in kB/s

1



Introduction 2

is because high throughput is an absolute priority in such data gathering systems as

one cannot be sure how much time is available for the data gathering process. After

investigating the three implemented transfer methods this project will also briefly

touch upon storage node selection mechanisms and propose a system to select storage

nodes to maximise the efficiency of gathering data from multiple storage nodes.

Before delving into the minutiae of the systems used and how the methods work

Chapter 1 gives some background information about wireless sensor networks and

the WildSensing project. Chapter 2 presents the framework created to test the

transfer methods and the software and hardware used in this project. Chapter 3

details the way the transfer methods work. Chapter 4 builds on this to present

how they were tested and provides a performance analysis of the different methods.

Chapter 5 briefly discusses how to select nodes using the Received Signal Strength

Indicator (RSSI) values measured from the beacon responses. The report is con-

cluded in Chapter 6, which presents the final results of the project and discusses

possible avenues for future investigation.



Chapter 1

Background

This chapter introduces the wireless sensor network used in the WildSensing project

and this project. It also discusses some of the research that has been performed

related to this project.

The WildSensing Wireless Sensor Network

The WildSensing group is a collaborative effort between the Oxford and Cambridge

University Computing Laboratories and the Wildlife Conservation Research Unit of

the University of Oxford to reduce the labour intensiveness of wildlife monitoring by

automating most of the process using a wireless sensor network. In order to explain

what wireless sensor networks are and why they are useful this project will discuss

the problems faced by wildlife conservationists and the solutions provided by the

wireless sensor network proposed by the WildSensing group (Figure 1.1).

In the presented situation, zoologists want to observe the living habits of badgers

in Wytham woods and the effect that climatic changes have on them. Traditional

observation methods involve placing temperature and humidity sensors in the area

to be observed and checking them periodically as well as observing the areas where

the badgers live in order to document their movements.

To reduce the observation time the badgers can be fitted with small radios - called

Radio Frequency ID tags or RFID tags - which can be sensed by RFID sensors. This

will observe the badger activity for the zoologist who will only need to visit the area

3



Background 4

Figure 1.1: A diagram of the WildSensing Wireless Sensor Network

to collect data from the RFID sensors while measuring the climatic changes.

This solution, however, cannot be used for time-critical data about the move-

ments of badgers. If a badger from another group enters the observed area the

zoologist will want to be around to see how the badgers behave and thus collecting

data about the whereabouts of badgers a day after the fact is too late to be useful.

In order to solve this problem, the RFID sensor nodes can be connected together

in a wireless network (represented by 802.15.4 links in Figure 1.1) containing a 3G

Link which will take time-critical data from the network of RFID sensors and send it

over the cellular network and the internet to the zoologists so that they are notified

quickly after a time-critical event happens.

In order to complete the solution, the network of sensors must also include sensors

to register climatic changes. These sensors however do not need to send data to the

zoologist immediately so it is perfectly fine if the data is collected later. Now that
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all of the sensors are connected in a wireless network it seems silly for the zoologist

to need to visit each climate sensor to download data, the data should be moved to

places where the zoologist will be. To achieve this, the WildSensing group added

storage nodes to their solution. These storage nodes are sensors in the wireless

sensor network which are located in places where the zoologist is likely to be and

will therefore gather data from the other sensors in the network so that the zoologist

need not visit them.

The final part of the solution - and the objective of this project - is to develop a

special node, called a mobile sink, for the wireless network which the zoologist can

carry when performing conservation related tasks and will download all of the data

from the wireless sensor network so that the zoologist need not interact with the

sensors.

Related Work

In the seminal paper by Gupta et al on ’The Capacity of Wireless Networks’ [22]

one can clearly see the need for mobile sinks in wireless sensor networks. They

propose, and prove, that in ad-hoc wireless networks the throughput of the network

is inversly proportional to the number of nodes in the network. To address this

issue they propose introducing cells in wireless networks which can act as points

to collect data from the network and use another transport medium to pass the

information on. This is where the mobile sink and storage nodes come in. If all

of the information from the WildSensing network were routed through the 3G Link

node the throughput of the network would be severely affected. The use of storage

nodes allows the sensor network to have a cellular structure where the link between

the cells delivering data to the researchers becomes the mobile sink which can travel

quickly between the cells gathering information and reducing network congestion.

In order to get data from the sensor network to the mobile sink several different

methods have been proposed. In particular Sankarasubramaniam et al [37] propose

a new transport protocol1 which purports to bring information reliably from an
1Instead of using the standard internet transport protocols TCP and UDP
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event to a sink by changing the states of the nodes in the network based on their

connectivity status. This method, however, is of little use in this project as the

transfer methods in this project are built for the embedded systems operating system

Contiki running the uIP stack2. The uIP network stack is a IPv6 networking stack

specially designed to run on resource constrained devices. In the paper presenting

uIP [15] Dunkels explains that it is beneficial to use IPv6 given that many devices can

communicate via IPv6 and therefore one does not need a special node to translate

IP communication into the specific communication protocol used by the network.

Overhead issues presented by the TCP/IP protocols are also discussed and it is

shown that UDP can be used when minimal overhead is required and otherwise the

TCP protocol can be compressed to a certain degree to reduce the impact of the

overhead.

This project aims to use the code provided by the WildSensing project without

modifications. This entails two things, the transport protocol used will have to be

the UDP protocol and any modifications to the transfer protocol will need to be

performed within the application instead of in the networking stack as is usually the

case. In order to make the UDP connections provided by the network reliable. In-

spiration was taken from previously proposed RUDP protocol [4] which adds reliable

connectivity to UDP transfers.

In order to properly gauge the results of this project it is useful to know what

throughputs are physically possible before different transport protocols are involved.

Osterlind et al have studied the maximum possible throughput using the uIP stack

in [34] and shown that when using the uIP stack in conjunction with the Contiki OS

the maximum possible throughput on a cc2420 radio with a theoretical throughput

of 256 kBits/s (32 kB/s) is 120 kBits/s (15 kB/s). This significant difference in the

theoretical and the useful throughputs is due to the fact that when sending data it

needs to be moved from the memory to the radio which takes quite a long time. It

has also been stated in [34] that the processing of headers by the different layers

reduces the throughput even further.

Using RSSI values to a node in relation to other nodes in a wireless network is
2These are explained in more detail in the following chapter
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quite common and has been covered by Sugano et al [40]. Kotz et al [28] however

show that individual RSSI values will lead to erroneous assumptions about the net-

work given that the connection fall off is hardly smooth. As far as can be determined

no work has been produced which uses RSSI values at different distances in order

to ascertain the projected communication duration and strength between a mobile

and static node.



Chapter 2

System Description

This project was built in two parts. Responder nodes which are nodes running

a module running in parallel to the software written by the WildSensing project

allowing the nodes of the sensor network to respond to mobile sinks and a mobile

sink node which interacts with responder nodes and downloads data from them. This

chapter gives a basic explanation of the behaviour of mobile sink and responder nodes

followed by an outline of the hardware used as well as a description of the embedded

systems operating system and network stack used. The chapter is concluded by a

presentation of the tool chain used to program the nodes and the virtual testing

environment used to test the nodes.

Sink and Responder Behaviours

Figures 2.1 and 2.2 give a general overview of the behaviours of both sink and

responder nodes. The mobile sink described in Figure 2.1 will continuously beacon

its presence as it travels through the network. When the sink hears responses from

responder nodes it will select the most desirable node1 and send a request for data to

it to initiate the transfer. Once a transfer is complete the sink node will mark the IP

address of the node it has just transferred data from and ignore any future messages

from that node. If the transfer process is interrupted, because the responder node is

not replying anymore, the sink node will reset its connection and begin beaconing
1Currently this is implemented on a first come first served basis. Chapter 5 introduces a more

advanced system.

8
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Figure 2.1: The general behaviour of the Mobile Sink

again. The beaconing behaviour of the sink node is possible because, in contrast to

the responder nodes, the sink node will be regularly recharged and benefits from the

large amount of power provided by the mobile computing device it is attached to.

The responder node in Figure 2.2 replies to beacons it receives from the mobile

sink, advertising its presence and willingness to send data. Once it receives a com-

mand from the mobile sink node to send data the responder node transfers the data

to the mobile sink making sure that every packet it sends has arrived reliably. When

the responder node has no more data it will send an end of connection message to

the sink and stop listening for beacons from potential mobile sinks for 30 minutes2.

This ’sleeping’ state of the node allows the node to save power by avoiding need-

less responses to beacons as well as reducing the amount of response packets which

could potentially collide after the sink sends out its beacon. If the connection is

interrupted during the transfer, the responder will go back to listening for potential

mobile sinks so that it can transfer the rest of the data.

Hardware

Both of the modules implemented in this project are built to run on the Tmote

Sky embedded systems used by the WildSensing project. The Tmote Sky systems

contain an 8Mhz MSP430 CPU with 10kB of RAM, 48kB ROM and 1MB of flash
2This value is a network specific value based on the period with which data is propagated

through the WildSensing network.
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Figure 2.2: The general behaviour of a responder node

storage for data. This means that the modules written had to be extremely small

and use as little RAM as possible to fit onto the embedded system along with the

operating system and the code from the WildSensing project3.

The radios used by the Tmote Sky nodes are CC2420 radios which use the

2.4GHz band transmitting on multiple channels and comply with the IEEE 802.15.4

standard for wireless sensor network transmissions. The range of the radios varies

between nodes given that some are cheaper and contain less powerful antennae and

thus have a range of 70m [30]; the more expensive nodes have a reported range of

125m [36]. This difference in ranges could have caused trouble when testing the

transfer methods implemented by this project and so it was decided to perform all

of the testing on the cheaper systems.

Software

Operating System

Due to the restricted amount of space available on the hardware components a

special purpose lightweight operating system needed to be used. There are several

such operating systems available most notably TinyOS [24] and Contiki OS [14].

In order to integrate with the WildSensing project the modules were built to run
3Dealing with program size and overfilled RAM was one of the most frustrating aspects of this

project.
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Figure 2.3: The Responder Module in the WildSensing System

on a customised version of the Contiki OS specially developed to cater for the

requirements of the WildSensing project.

The need for a customised version of the Contiki operating system in the Wild-

Sensing project arose due to the limited space available for adding extra functionality

in the few kilobytes left on the Tmote Sky nodes after a default installation of the

Contiki operating system. Therefore, all unnecessary features were removed from

the operating system in order to provide space in the ROM memory for the dif-

ferent modules of the WildSensing project. The two main elements removed from

the system by the WildSensing project were the Coffee file system manager and a

networking stack which would not be used by the WildSensing system called Rime.

The Coffee file system was removed because it takes up a lot of space to perform

file system maintenance which could be better used by custom code to perform func-

tions pertaining directly to the WildSensing project. To be able to store information

on the system instead of using the Coffee file system the WildSensing project de-

vised a light weight interface to the flash memory which stores relevant data whilst

having minimal overhead.

The removal of the Rime networking stack is due to the fact that it operates

in parallel to the uIP networking stack (explained later in this chapter) which the

project had chosen to use. The entire stack could not be completely removed how-

ever, as the buffer management system to manage incoming and outgoing data
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transfers was shared between uIP and Rime as well as the system for managing IP

addresses.

The mobile sink part of the project was programmed as an application running

on the same customised version of Contiki OS used by the WildSensing project. It

uses two connections, one which broadcasts messages out to the nodes surrounding it

advertising its presence and another, unicast connection, to perform the actual data

transfer. The sink, upon receiving data will send it via the USB port to be captured

by a python script. It was decided to create the sink in this way rather than setting

up a node as an IP bridge and controlling the data via an application written on

the host computer for cross-platform compatibility. The serial reader script works

on all of the systems in the WildSensing group, an application written on Mac OS

X or in Linux would need to be ported to be able to run on other systems. Also, at

the time of writing, setting up the necessary network interfaces to allow a node to

act as an IP bridge was not possible on Mac OS X 10.6, the operating system of the

main development machine.

The responder part of the project was also programmed as an application running

on the WildSensing customised version of Contiki OS (Figure 2.3). It however,

needed to run alongside the WildSensing routing code (called twinrapid) and the

sensor management code meaning that it required a much smaller memory footprint

to fit into the small amount of space left by the operating system and the two

WildSensing modules. To ensure that the memory footprint remained as small as

possible, the responder module only used 1 network connection and 1 timer4.

The Network Stack

The networking stack used by this project can be seen in Figure 2.4. There was not

much choice in network transmission protocols due to the fact that the mobile sink

system needed to integrate with the WildSensing sensor network which uses uIPv6.

The whole stack allows for IPv6 communication using the UDP protocol. The code

written for this project all lies in the application layer and uses the pre-existing
4Many systems use two network conections, one for link maintenance packets such as acknowl-

edgements. Many protocols also use more than one timer such as the cumulative acknowledgement

sliding window method from TCP.
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Figure 2.4: The Networking stack used by the project

lower layers.

The uIPv6 stack is a fully functional IPv6 stack designed for embedded systems

allowing them to communicate with larger systems that use IPv6 and it only uses

4kB of ROM and 1kB of RAM with all functions. The stack has been modified to

remove the ability to use TCP communication in order to allow more space for code

pertaining directly to the WildSensing project5. uIP handles communication with

the application layer and prepares the data packets which need to be sent. It does

this by generating the UDP headers necessary for the transfer and other functions

specific to UDP transfers. At the moment however, the uIP implementation does not

allow for UDP checksums so the data being transferred by the systems in this project

will not be checksummed. This is not considered too much of a problem because

when a packet is corrupted in a wireless transfer it is exceedingly rare that only the

payload is corrupted. This is especially true when the payloads being sent are very

small. The systems proposed by this project sends four 48 Byte WildSensing data

elements along with a 1 Byte identifier in each packet. The final packet sent over
5Leaving the TCP protocol in the stack would have taken up too much space in the ROM

memory, also the overhead generated by the TCP headers would have impacted the throughput

heavily.
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the radio is 308 Bytes meaning that there are 115 Bytes6 of header information in

each packet being sent and thus lowering the likelihood that corruption only affects

the payload.

The uIP layer uses the Rime addressing system to manage the allocation of

IP addresses and also uses the global 128 Byte buffer provided by Rime. The

discrepancy between the packet size and the buffer size can be explained by the fact

that the uIP stack only uses the buffer to create the packet header, the rest of the

information remains where it has been stored in RAM by the application.

After uIP creates the UDP packets the SicsLowPan layer takes over. The Sic-

sLowPan layer is an implementation of RFC4944 [12] which defines the use of IPv6

over 802.15.4 networks. The important parts of SicsLowPan’s operation which con-

cern the project are the header compression and the fragmentation functions. Sic-

sLowPan has the ability to compress UDP headers which means that IPv6 packets

have much less overhead. If after compressing the headers the packet defined by

the uIP is still too big to fit into an 802.15.4 frame whose payload size is set to 102

Bytes the SicLowPan layer proceeds to fragment the packet. This functionality is

present because the maximum packet size in IPv6 is 1280 Bytes. Once the packets

have been properly fragmented and compressed the data is passed onto the MAC

layer.

Figure 2.4 shows two distinct MAC layers which can be called by SicsLowPan.

This is because the WildSensing project uses the X-MAC system [5], a duty-cycled

MAC layer which attempts to keep the radio off for as long as possible to save power.

The problem with this MAC layer however, is that duty-cycling and the necessity

to strobe to wake up a counterpart node has an enormous impact on throughput.

Given the need to transfer data from the nodes as quickly as possible it was decided

to use the Sicslowmac MAC layer [13] which keeps the radio on all the time and

thus achieves a higher throughput.

Regardless of the MAC layer used, the MAC layer frames the fragmented data

received from SicsLowPan into 802.15.4 frames and passes the data to the cc2420
6Values quoted are including header compression and fragmentation, in this case the initial

packet was fragmented into three 802.15.4 frames adding up to 308 Bytes. This also means that

37% of data transferred is overhead data.
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radio driver which sends the data wirelessly.

The Development Platform

In order to be able to program the embedded systems appropriately the systems

were connected via USB to a computer running Mac OS X 10.6. A serial reader

python script written by Andrew Markham was used to read the output from the

embedded systems and save it to file. Programming the Tmote Sky nodes was done

using the mspgcc compiler and several loading scripts.

Late on in the project, after many hours spent tracing the systems using strate-

gically placed printf statements, a simulator named Cooja was added to the devel-

opment platform. Cooja can simulate multiple nodes running at the same time in a

virtual environment as well as simulating their radio communications. The simula-

tor environment also allows the simulation to be paused meaning that a particular

node’s exact state can be minutely examined. This greatly increased the speed of

the development process in the later stages of the project.

In order to correctly analyse all of the data gathered by Cooja and the serial

reader script several python scripts were written to parse the gathered data and plot

it on the graphs (which can be seen throughout this report) using the matplotlib

library.



Chapter 3

Outline of Implemented Data

Transfer Methods

This chapter discusses the main transfer protocols that were implemented to transfer

data reliably from the responder node to the sink using unicast UDP connections.

Three different methods were created to generate the highest throughputs while

ensuring the reliable transfer of data. For the interested reader, detailed flow charts

of the behaviours of each of the created modules can be found in Appendix A.

Single Acknowledgement Transfer

The first method implemented to transfer the data from the responders to the mobile

sink is a method which acknowledges every single packet received. It is a simple

method designed to be a robust platform for future development.

The method follows a very linear execution path allowing each event to happen

in turn. Data is retrieved from flash, data is sent to the sink, data is printed

to the terminal at the sink and an acknowledgement is sent to the responder.

This means that there are periods where either the sink or the responder are

simply waiting to hear back as their counterpart performs what could be quite

a lengthy task which has a strong impact on the throughput (Figure 3.1). The

advantage of this method is that it is easily traceable and is simple to implement.

16
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Figure 3.1: An example of the
Single Acknowledgement transfer
method with a connection fail
after the first successfully sent
packet.

To increase the throughput, the packet frac-

turing property of the IPv6 protocol employed

in uIP was used. This allowed the responder to

create a network packet of 192 Bytes1 contain-

ing four 48 Byte data packets from the Wild-

Sensing network to be sent to the mobile sink as

one fractured packet. This means that for every

packet that the responder sends to the sink it is

effectively sending four WildSensing data pack-

ets meaning that in effect only one acknowledge-

ment needs to be sent for every four data packets.

This increases the throughput fourfold without

actually adding any complexity to the responder

or the sink.

Interruptions to the connection between the responder and the sink are handled

by a timeout function in the responder. The responder resends the network packets

at most 10 times if it does not hear from the sink. After which it pushes the data

retrieved from flash and stored in RAM back into the flash memory. If the sink does

not hear from the responder for a predetermined amount of time it will close the

connection and resume beaconing in an attempt to connect with another responder.

Double Buffered Transfer

As can be seen from Figure 3.1 the Single Acknowledgement system spends a lot of

time processing the received data in the mobile sink and fetching data from the flash

memory in the responder. In an effort to increase the throughput an extra buffer

was added to the responder so that it could not only store the packet that had just

been sent but also store the next packet to be sent allowing the responder to load

the data while it is waiting for an acknowledgment from the sink. An example of
1Without headers, with UDP headers and 802.15.4 headers the final packet sent totalled 308

Bytes.
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this behaviour can be seen in Figure 3.2.

Figure 3.2: An example of the
behaviour of the Double Buffered
transfer method with connection
interruption at the second ac-
knowledgement.

The addition of a second buffer meant that

the handling of the final acknowledgement of

data needs to be handled differently in this trans-

fer system compared to the previous transfer sys-

tem. In the Single Acknowledgement method the

final done message is sent as soon as the flash

memory is empty given that every piece of data

preceding a call to load data from an empty flash

memory would have been acknowledged. In the

Double Buffered system however, when the re-

sponder fetches the next data to send and finds

the buffer empty it cannot immediately send a

done message because the final packet has not

been acknowledged. To overcome this, a flag is

set in the system which is checked at the recep-

tion of every acknowledgement. If the flag is

true, the system knows that all of the data has been sent and acknowledged so the

done message can be sent. Also, to avoid the storage of random data, if the done

flag is true when the connection is interrupted the responder will only push the

buffer corresponding to the sent data back to the flash memory and not the buffer

corresponding to the data to be sent.

Sliding Window Transfer

The Sliding Window transfer system is the most intricate transfer system imple-

mented in this project. This system is derived from the Sliding Window system

implemented in the TCP protocol and reduces the number of packets needed to

acknowledge data being transferred. The Sliding Window system in TCP however,

uses several timers to determine whether or not a sent packet has timed out. The

version implemented in the responder uses only one timer to reduce the amount of



Outline of Implemented Data Transfer Methods 19

memory needed to run it.

The Sliding Window transfer system works by sending a burst of packets from

the responder without waiting for an acknowledgement between the packets. The

sink receives these packets and logs each one as received. When the burst is over,

the sink sends back an acknowledgement to the responder telling it which packet

it expects to see next. The responder uses this information to determine which

packets made it to the mobile sink and sends the next burst of packets accordingly.

To reduce the number of packets sent, if a burst is interrupted in the middle of the

transfer, the responder will only send unacknowledged packets again. To handle

such cases appropriately the following scenarios are taken into account:

Sink Scenarios:

Full Burst Received:

(a) (b)

Figure 3.3: The behaviour of the sink
when a full burst is received. (a) is when
all the sequence numbers match and (b) is
when the local sequence number is higher
than the arriving sequence numbers.

In this situation the local sequence num-

ber is incremented every time a valid

data packet is received. A packet is de-

termined as valid if the sequence num-

ber of the data packet matches the lo-

cal sequence number. When the sink

has counted that the correct number of

packets have arrived - the sink should

know the burst size of the responder

ahead of time - it sends an acknowledge-

ment to the responder with the sequence

number of the next data packet it ex-

pects to receive.

If the sink is expecting data with a

sequence number higher than the data

arriving from the responder - due to the

responder not receiving the previous acknowledgement. The sink will ignore incom-
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ing packets until one of them has the expected sequence number (Figure 3.3b).

Partial Burst Received:

In this case the sink has received part of a burst of data but some or all of the

sequence numbers are wrong. For instance if the sink is expecting packets with

sequence numbers 1 - 8 from the responder, and only 2-8 arrive or packet 3 fails

to arrive. In such instances the sink will send back an acknowledgement with the

sequence number of the failed packet to arrive and discard all packets which have

arrived after the missing packet in order to keep the sequence of the data identical

to the sequence of the data sent by the responder. If the end of the burst fails to

arrive the timer which times the arrival of the burst will run out and the sink will

send an acknowledgement for the next packet it is expecting (Figure 3.4). If the

timer is triggered a certain number of times, the connection is deemed to have failed

and the sink will close the connection with the responder and begin polling for data

again. If data packets arrive with a sequence number lower than the local sequence

number - again due to the failure of a previous acknowledgement packet to arrive

at the responder - these will be ignored until a packet with a valid sequence number

arrives.

Responder Scenarios:

The responder, in order to handle the burst transfers and not lose any data, keeps

an array of the packets which will need to be sent in a particular burst. The array

has the particularity that its start position is dynamically managed by the transfer

system to allow the responder to know which packets from the burst have reliably

made it through to the sink and thus do not need to be sent again. This is done

by reassigning the start position to the array to point to the packet with the same

sequence number as the acknowledgement received by the responder in the case of

a partial transfer.
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Figure 3.4: The behaviour of the sink when receiving a partial burst. Left is the
situation where no data arrives, middle is an example when a packet from the burst
is missing and right is the situation when the end of the burst fails to arrive.

Timer Timeout:

In this case the timer which determines the amount of time to wait for an acknowl-

edgement has run out. This means that the previous burst transfer has not been

acknowledged and therefore will need to be sent again. The responder will then send

out the same burst as it has just sent, increment a resend counter and restart the

acknowledgement timer. It will only do this until the maximum number of resends

has been reached. If that happens the responder will assume that the transfer has

failed, close the connection and push the data from the buffer back into the flash

memory - preparing itself for the next mobile sink.

Partial Acknowledgement Received:

A partial acknowledgement is an acknowledgement message which is received by

the sink with a sequence number corresponding to the packets stored in the burst

buffer. This allows the responder to infer that the burst was not fully received. The

responder simply sets the start of the burst array to the packet with the sequence
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Figure 3.5: The behaviour of the responder in the different acknowledgement situa-
tions. Left: Timeout. Middle: Partial Acknowledgement. Right: Full Acknowledge-
ment.

number corresponding to the sequence number in the acknowledgement and sends

the unacknowledged part of the buffer again.

Full Acknowledgement Received:

When a full acknowledgement is received the sequence number of the acknowledg-

ment corresponds to the sequence number of the first item of the next burst to be

sent. This simply means that the burst array is filled with new data, the start of the

array is reset, the next full burst is sent and the acknowledgement timer is restarted.

Special Cases:

There are several special cases which need to be directly addressed by the system.

The three most important ones are when an acknowledgement with completely the

wrong sequence number arrives, when there is no more data and how to handle the

sequence number variable overflowing.

The first special case is quite trivially handled. If an acknowledgement or a data

packet arrives with a sequence number that is not in the range of the current sending

burst it is completely ignored and considered as a corrupted packet. This will only
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happen if there is a serious problem with the nodes or if the packet is indeed corrupt

so it is safe to ignore such packets. The only thing that can happen is that either

the sink or the responder closes the connection and no data will be lost.

Handling a situation when there is no more data is absolutely crucial for the

responder because the aim of the system is to reach a situation where the responder

has no more data to transfer. There are two possible cases in this situation, either

the system remarks that there is no more data when attempting to start creating

another burst, or the system runs out of data while creating another burst. In the

latter situation, the remaining packets of the burst are filled with null data which

will be ignored at the sink. In the former case, the responder knows that all the data

sent has already been acknowledged so the responder simply sends a done message

to the mobile sink.

The final case is an implementation issue rather than a design issue but is worth

mentioning nonetheless. Because of the small amount of RAM available on the

nodes, it was deemed prudent to try and minimise the amount of overhead required

by the sending process. This meant that an 8 bit unsigned integer was used for the

sequence numbers, which only has a range from 0-255. To be able to send more

than 256 packets the variable was allowed to overflow and thus loop back around

to 0 after 255. This means that it is not possible to simply check to see if sequence

numbers are greater than or less than certain values when checking the validity of

acknowledgments and data packets. Fortunately, as the number of packets in each

burst is known it is possible to determine when the overflow issue will occur and

handle it by checking for the sequence numbers up to 255 and then also checking

the sequence numbers from 0.

Another implementation issue was the fact that the Sliding Window method

could not be implemented using the eight packet bursts presented in the theoretical

explanation but had to be limited to two packet bursts due to the fact that there

was not enough space available in RAM to buffer more packets. Also, the method

could only use one timer given that using extra timers took up too much space in

RAM again.



Chapter 4

Investigation of Transfer Method

Throughput

This chapter outlines the tests performed in this project to determine the through-

puts of the different methods. The three transfer methods were compared in a

virtual environment and then in real world environment to determine whether the

results from the virtual environment were consistent with a physical environment.

Comparing the Different Transfer Methods

To effectively compare the three different transfer methods implemented in this

project a series of tests were performed to measure the throughput1 (the rate data

being transferred in kB/s) of the transfer methods in various configurations. Once

the throughput of the different transfer methods was measured, the reasons for the

differences in throughput were explored.

In order to measure throughput, tests were performed in two separate phases, a

phase of virtual testing loading the transfer methods onto virtual nodes placed in

the Cooja virtual environment and a phase of physical testing where two embedded

systems from the WildSensing project were programmed with the different transfer
1The term throughput is used in this project instead of the term goodput because this project

does not alter the headers of the network packets in any way. It should be noted that the volume of

useful data actually being transferred is only 62% of the throughput due to the overhead introduced

by the IP and 802.15.4 headers.

24
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methods. The methods were tested in these two phases because the data from

the virtual environment, which provides a way to test the nodes without having to

worry about interference, signal fading or signal scattering, can be used to determine

whether the changes in throughput during the physical tests are due to issues with

the transfer methods or are due to external influences. The virtual environment also

allowed for a more comprehensive investigation of the state of the simulated nodes

meaning that the differences between the transfer methods could be more accurately

explained. To ensure that the real world tests were all the same the advice given

about testing wireless communication in [28,45,46] was followed2.

The nodes were programmed in such a way that the only difference between them

was the transfer method. This ensured that any behaviour discrepancies between

the tests can be attributed to the transfer systems used and not to differences in

the software configuration. Every responder node was loaded with 7500 48 Byte

WildSensing data elements which the sink would need to retrieve.

Virtual Tests

The virtual tests are designed to compare the transfer methods in an environment

free of interference and environmental factors. The tests were performed by measur-

ing the throughput while transferring the contents of the responder’s flash memory

to the terminal output of the sink node, the number of times packets needed to be

resent and the number of times the connection was interrupted. All of the tests were

performed in the Cooja virtual environment with the radio medium set to unit disk

graph. A unit disk graph simulation of the radio medium assumes that the connec-

tion is perfect in the whole range of the radio and non-existent outside the radio

range. This provides an ideal view of the transfer systems and any issues that may

crop up can therefore be attributed to the transfer methods and not environmental

factors. The simulated environment also allows for a more in depth analysis of the

states of the nodes given that it is possible to see everything going on in the nodes

rather than just the data printed out.

Given the fact that the simulation uses the unit disk graph method to simulate
2To see a full description of all the controlled variables see the Real World Static Tests section.
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the radio medium the effect of distance on the transmission will be very unrealistic.

Therefore, the methods are only tested on two different levels in the simulation

system - both at the same distance. In the first test the sink prints out the data it

has received, in the second the data is not processed at all but the data is simply

passed into RAM memory. The latter is used to test how much printing affects the

throughput.

To measure the differences between the transfer systems the following periods

were recorded: the throughput of the transfer, the number of packets needed to be

present and the number of times the connection was interrupted.

Real-World Static Tests

These tests add a layer of complexity to the testing environment by performing the

tests on actual hardware. This means that environmental factors and hardware is-

sues need to be taken into account to ensure that the testing of the different transfer

systems isn’t affected by factors such as system voltage, radio orientation or inter-

ference from other radios on the same band. In all of the physical tests performed,

the following factors were kept constant: node orientation, nodes used, node eleva-

tion, node charge, the location of the test, weather conditions and interference from

personal wireless devices.

• The orientation of the node was kept constant because the finding in [46] which

states that the link quality and signal range are heavily affected by antenna

direction, even for multi-directional antennae.

• All of the tests were performed on the same physical nodes because both [46]

and [28] agree that one cannot assume that all wireless devices have the same

range and afford the same link qualities.

• The elevation of the nodes was kept constant because it was noticed in pre-

liminary testing phases and inferred from [45,46] that the scattering, reflective

and fading effects of the ground could have a very large impact on the wireless

transmission range and quality.
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• To ensure that the transmission power did not vary between tests, the voltage

and charge of the batteries in the nodes were kept constant by ensuring that

the charge of the batteries remained constant for every test.

• Ensuring that the location of the testing remained unchanged throughout the

tests is crucial because different locations will provide different interference

patterns based on the physical objects around and the absorption qualities of

the materials in the area. To have a minimum amount of interference to deal

with, it was opted to perform the tests on an open field with a level ground.

• Given that it is impossible to control the weather conditions the tests were

performed directly one after another on the same day to make sure that the

weather conditions would remain as constant as possible throughout the tests.

• The final factor taken into account for the tests is present because the comput-

ers and personal telephones can have high power wireless transmitters which

may start sending data in the 2.4 GHz band during the tests and thus swamp-

ing out the signals from the low power nodes being tested and interfering with

the communications.

With the major environmental and hardware factors accounted for the tests were

conducted with different distances between the nodes. The three distances at which

the methods were tested were 10cm, 20m and 40m.

Test Results

Virtual Tests

Figure 4.1 represents the results of the tests in the Cooja simulation environment.

As can be seen from Figure 4.1 the Double Buffered method is the fastest of the

three methods tested. It can also be seen that the removal of the printing operation

on reception of the data increased the throughput by up to 70%.

All of the methods when tested without printing the data suffered from a drop

in connectivity in the first ten seconds (Figure 4.4) - the sliding window method



Investigation of Transfer Method throughput 28

Figure 4.1: Throughput, resend and timeout counts in the virtual environment

with data printing almost dropped the connection but managed to recover on the

final resend. This problem is due to an error in the neighbour discovery code of the

uIP stack which tries to refresh its neighbour database during this time. In every

case where the neighbour discovery caused dropped packets it is because the packet

sent by the neighbour discovery protocol collided with one of the acknowledgment

packets and caused the sink’s uIP stack to stop alerting higher layers of incoming

data from what it considered a stale address causing the connection failure.

Another feature that can be observed in Figure 4.4 is that at around second 90,

there is a sharp dip in the data rate. This is due to the fact that after receiving

an acknowledgment the responder waits for almost a second before replying because

the operating system or the WildSensing code is performing a task that blocks the

responder process.

Real World Static Tests

In the real world tests, in contrast to the virtual environment tests, the Sliding

Window method manages to sustain a data rate that is consistently higher than the

Double Buffered method (Figure 4.2). It can also be seen that distance did not have

a significant impact on the throughput.

The features discussed in the virtual tests causing disruptions to the transfers

can also be seen in the results of the real world tests in Figure 4.5. The neighbour

discovery bug can still be seen disrupting the connection in the first 10 seconds. The
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Figure 4.2: The throughput and the number of timeouts in the real world tests

seemingly haphazard occurrence of the drop is due to the fact that the bug relies on

timing and may not occur if the neighbour discovery packets are sent while neither

of the nodes are transmitting. The drop in data rate due to the responder process

being suspended is also present in the real-world data tests but it is much more

difficult to spot due to the fact that there are many other issues causing drops in

the data rate. It can be seen occurring between the 85th and the 110th seconds on

the graphs.

There were consistently more timeouts in the real world tests than the virtual

tests due to the fact that radio waves were absorbed, reflected and diffracted by

the environment increasing the possibility of collisions [45]. There are two problems

with dropped connections. First the sink takes quite a long time to timeout - longer

than the responder. Secondly it can take up to five seconds for the sink to reconnect

with the responder after the connection is dropped. The first issue is easily solved

by setting the timeout timer on the sink to something shorter. The second issue

cannot be solved without making changes to the hardware specifications.

Test Conclusions

In order to properly assess the results of the tests a few extra tests were performed

to examine the effects of getting data from flash (Fetch), sending acknowledgements

(Ack) and printing the data on reception (Print). The impacts of these operations
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Figure 4.3: The effect of various different operations on the throughput of the nodes

can be seen in Figure 4.3. From this it can be seen that there is a discrepancy

between the effects on the virtual nodes and the physical nodes which explains the

differences in the transfer method test results.

The virtual tests showed that the Double Buffered method had a higher through-

put than the Sliding Window but this was not the case in the real world tests. As

can be seen in Figure 4.3 this is because the virtual nodes take longer to retrieve data

from the flash memory but can transmit acknowledgements faster. In the physical

nodes, the inverse is true. This difference causes the Double Buffered method to

perform much better in the virtual environment than in the real world environment.

As can be seen from Figure 4.3 it will be impossible for any of the methods

to reach a throughput of higher than 15 kB/s without changing the network stack

significantly3. A value of close to the 13 kB/s performed by simply fetching the data

and sending it should be possible with the right transfer method, unfortunately in

the real world tests the throughput could not be brought past the 9 kB/s achieved

by the Sliding Window method. If however, the Sliding Window method had more
3This upper throughput threshold is explained in more detail in [34].
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RAM available and could thus transfer longer bursts it would be able to get much

closer to the desired 13 kB/s.

In all, from these tests, it can be concluded that the Sliding Window method is

the method of choice to achieve the highest throughput over a reliable connection.

This is because it consistently scored the highest throughput in the real world tests

and, given more RAM, can be extended to achieve higher throughputs.
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(a) Single Ack method (b) Single Ack method with no printing

(c) Double Buffered Method (d) Double Buffered method with no printing

(e) Sliding Window method (f) Sliding Window method with no printing

Figure 4.4: The data rates of the different methods tested
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Chapter 5

Selecting Nodes using RSSI

This chapter discusses tests performed to investigate how the Received Signal Strength

Indicator - RSSI - can be used to select the right nodes to download data from. It

starts by giving the motivations for selecting the right storage nodes. The chapter

then goes on to describe the methods used to investigate RSSI values at different

distances and how the data was analysed. Finally the chapter ends by proposing

a node selection method based on the information gathered in the investigation of

RSSI values and the situations outlined in the motivation section.

Motivation

When downloading data from multiple storage nodes it is important for the mobile

sink to choose nodes from which it will be able to maintain a connection for the

longest period of time. This ensures that the sink spends less time polling for new

nodes or dealing with interrupted connections and more time transferring data from

storage nodes, increasing the overall throughput of the mobile sink.

The selection method implemented in this project, is a naive first come first

served method, the mobile sink will gather data from first responder node to reply

to the mobile sink’s beacon. Given the situation presented in Figure 5.1 there is a

possibility that as the mobile sink travels through the network determined by nodes

A, B, C and D that it will spend most of the first half of its journey attempting to

connect to nodes B and C (which will result in poor throughput given that the sink

34
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is at the very edge of their ranges and many packets will be dropped) instead of

connecting to node A - which will be closer to the sink for a longer period of time

and thus will be able to transfer more data to the sink. In order to create a system

for the selection of nodes this project assumes that the mobile sink is travelling along

a predetermined path through the nodes following a roughly straight line. Deducing

a system which will be effective for more complex paths is left for further research.

Figure 5.1: A situation where a smart
node selection method is needed to select
node A over B,C & D

It is known from [30, 36, 40, 42, 46]

that the RSSI value of a connection gen-

erally gets smaller as two nodes connect-

ing wirelessly are placed farther apart.

It is also known from [28] that this fall

off is not uniform. As the mobile sink

is moving it can be assumed that if the

RSSI values are polled for long enough

the trend of the recorded RSSI values

will be able to indicate whether or not

a mobile sink is moving towards a node

or away from it.

Measurement Method

To measure the RSSI levels of the con-

nection the same test set up and lo-

cation was used as for the throughput

measurements of the transfer methods.

Instead of standing statically at various

different distances from the responder node however, the mobile sink was moved -

taking care to ensure that the height and the orientation of the node did not change

- towards the responder node from a distance of roughly 100m away. This distance

was chosen because it is outside the communication range of the responder and
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therefore it would be possible to observe how the RSSI values changed as the sink

was moved into range of the responder. In order to measure the distance at which

the RSSI values were recorded, a GPS tracker was used to log the longitude and lat-

titude of the mobile sink. The GPS data was processed to give the distance between

the two nodes at a given time by calculating the distance between the coordinates

of the mobile sink and the coordinates of the responder node for every second.

The RSSI values were gathered by a module written for the embedded system

every time an arriving packet was reported to the application layer by the networking

stack. This was done to ensure that the RSSI values recorded would reflect the RSSI

values which would be presented to the mobile sink when it receives responses to its

beaconing.

Once the GPS logs and the RSSI logs had been gathered they were processed by a

python script written to parse the logs and measure the distance from the responder

node at a particular time and the corresponding RSSI value. The results of which

can be seen in Figure 5.2. In addition to measuring the RSSI, the throughput of the

system at a given distance was also measured.

Selection Method

As can be seen on the graph in Figure 5.2 the throughput of the connection between

the mobile sink and the responder is loosely correlated with an increase in the RSSI.

More precisely, one can see that the maximum data rates are achieved when the RSSI

values become higher than 15 dBm. Another feature that can be seen in the graph

is that the RSSI values increase exponentially as the sink approaches the responder.

These two features allow two conclusions to be drawn. First if a connection is to be

effective the average RSSI value for a responder node should be at least 15 dBm.

Second, the trend in the variation of the the RSSI values can be used to determine

whether the distance between two nodes is increasing or decreasing given several

readings over a period of time.

The conclusions drawn from the RSSI and throughput data lead to the following

requirements for a node selection system. The measurement of the RSSI must
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happen over a period of time to be able to determine if the RSSI values are trending

towards higher values or whether they are trending towards lower values. A node

which consistently reports RSSI values of less than 15 dBm should be ignored as it

is too far away to initiate a useful connection. With these requirements it is possible

to outline a basic system for the selection of nodes based on their RSSI values.

Figure 5.3: The RSSI values of the con-
nection between a sink and a responder as
the sink goes past the responder. Position
A is the most desireable point to start a
connection, B is the place where a selec-
tiong method based only the RSSI value
would start the connection and C is the
least desirable place to start a connection.

In order to effectively explain the

node selection method it is useful to

keep the picture in Figure 5.3 in mind.

The method aims to maximise the

amount of time the sink and the respon-

der have to transfer data while the con-

nection has an RSSI which is above the

cutoff threshold. This implies initiating

the connection at position A in Figure

5.3. To do this the method polls the

RSSI values of a connection with a re-

sponder over a certain period of time,

the period of time taken to poll the

RSSI values should be proportional to

the speed of the mobile sink in an attempt to ensure that the RSSI values cover a

range of distances. A weighted average of the RSSI values is then taken to ensure

that they are above the threshold1 - 15dBm. Once it has been determined by the

weighted RSSI average that a given node is eligible for connection, the slope of the

linear regression of the collected RSSI values is calculated, if it is a positive slope

the final rank of the node will be 200-(weighted average RSSI). If, on the other hand

the slope is a negative slope the final rank of the node will simply be the weighted

average RSSI. This means that if a sink and responder are in a situation correspond-

ing to position A in Figure 5.3 the responder will have a rank of close to 185 - the

maximum rank. Whereas if a sink and responder are in a situation corresponding to

position C in Figure 5.3 the responder will have a rank close to 15. This ensures that
1The average is weighted in favour of more recent RSSI values in an effort to ensure that stale

RSSI values do not impact the average too much
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the desirability of a node is accurately represented by the ranking system. Once all

of the possible responders have been ranked, the sink will then choose the responder

with the highest rank.



Chapter 6

Conclusions

Summary

This project aimed to build a mobile sink which will integrate with the WildSensing

wireless sensor network to gather the data collected by the sensors. In particular it

aimed to produce a fast, reliable, connection-oriented transfer method which could

be used to transfer data from the network onto the mobile sink. It also aimed to

investigate the link between RSSI values and the connection throughput in order to

propose a way of selecting nodes of the WildSensing network which will generate

the highest overall throughput.

All of the aims of this project were achieved. A mobile sink framework was

created, three different transfer methods were tested on the framework in order

to determine which was the fastest and a method was proposed to select which

storage nodes should be selected to transfer data from. The final conclusion of the

investigation of the transfer methods was that the Sliding Window method would

be the best method to use as it had the highest throughput on the physical systems

and had the ability to become even faster given an embedded system with more

RAM memory which would allow for longer bursts.

The investigation of the correlation of the RSSI values to the data throughput

yielded information that the data throughput reaches its maximum speed above an

RSSI value of 15 dBm. It also revealed that the RSSI values rise exponentially the

closer two nodes get to each other meaning that changes in RSSI levels will determine

40
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whether two nodes are getting closer together or are moving apart. These two

findings led to the proposition of a selection method which polls potential responder

nodes over a period of time while the mobile sink is moving and uses the level and

variation in RSSI values to rank the potential responder nodes in order of desirability.

Testing of the proposed system however, was left for future research.

Learning Outcomes

Before building this mobile sink for the WildSensing project I had never worked on

embedded systems before, and it is completely different to conventional program-

ming. It demands a much more in depth knowledge of the system being developed

for on the software and hardware layers. Also, due to the space restrictions on the

embedded system, I needed to be constantly aware of exactly how much space my

code was using given that if I used too much the code would either not compile or

cause the system to behave erratically.

When a system behaved erratically finding out what was causing the problem

was incredibly difficult. Given that for the majority of the project I did not have

access to the Cooja simulator, all exploration of the system had to happen through

printf statements which may or may not break the time-sensitive operation observed.

Because of the novel development environment and the difficulties exploring the

system on which I was working, it took a very long time to ensure predictable

performance. Causing me to spend a lot more time than expected building the

systems presented in the project. Which in turn limited my ability to develop more

advanced transfer and node selection methods than the ones presented.

On finishing this project, I feel that I have gained an insight into the intricate

nature of programming for embedded systems as well as a full understanding of

wireless network communication systems. I have also gained a deep understanding

of how the Contiki operating system works and more specifically how the uIP stack

works. In all, I have greatly enjoyed the challenge of developing software for embed-

ded systems and I look forward to seeing what future research will provide in the

field of wireless sensor networks.



Conclusions 42

Future Work

The topic of gathering data from wireless sensor networks is an extremely interesting

one which is seeing more and more attention as the subject of wireless sensor net-

works becomes more mature. Given more time to work on this project it would have

been extremely interesting to delve deeper into the different mechanisms for deliv-

ering data to mobile sinks and extend the currently implemented system to include

a more advanced version of the proposed node selection method and allow the data

collection to extend past single-hop transfers into multi-hop transfers which allows

the mobile sink to gather data from nodes which it cannot directly communicate

with.

It would also have been very interesting to implement other transfer methods

such as the selective acknowledgement scheme described in [3] or adding a packet pre-

loading system such as the one in the Double Buffered method to the Sliding Window

method in order to reduce the time taken to reply to burst acknowledgements.

Another option to improve the data collection process would be to implement the

mobile sink on a more powerful machine and only use the radio of the embedded

system for data communication meaning that the mobile sink would be able to

handle incoming data at a much faster rate and less time would be wasted while the

mobile sink processes the data coming in from the responder node it is connected

to.

The node selection method could, with more research be adapted to handle com-

plex paths more precisely and rank nodes more effectively than they are currently

being ranked. Also, a more complex node selection system would be able to incor-

porate the amounts of data stored in each responder node in order to make decisions

based on projected future node visibility as well as the amount of data needed to be

fetched from each node.
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Appendix A:

System Behaviour Flow Charts

Figure 1: The Single Acknowledgement Method Sink Behaviour

48
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Figure 2: The Single Acknowledgement Method Responder Behaviour



System Flow Charts 50

Figure 3: The Double Buffered Method Sink Behaviour
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Figure 4: The Double Buffered Method Responder Behaviour
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Figure 5: The Sliding Window Method Sink Behaviour
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Figure 6: The Sliding Window Method Responder Behaviour



Appendix B:

Python Scripts

Converting GPS and RSSI Logs into RSSI and Through-
put at a Given Distance

1 import sys
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4 from pylab import ∗
5 s i n kF i l e = open ( " . / r s s i . txt " , " r " )
6 gpsF i l e = open ( " . / gps . txt " , " r " )
7 sinkData = [ ]
8 dataPerSecond = {}
9 class data_msg ( ob j e c t ) :

10 def __init__( s e l f , r s s i =−55, time=0) :
11 s e l f . r s s i = r s s i
12 s e l f . time = time
13 x=0
14
15 #Parse the data in the l o g f i l e from the mobi le s ink
16 #t h i s w i l l g i v e us a bunch o f RSSI va l u e s a s s o c i a t e d to

t imes
17 while s i n kF i l e :
18 l i n e = s i n kF i l e . r e ad l i n e ( )
19 s = l i n e . s p l i t ( ’ , ’ , 2 )
20 n = len ( s )
21 i f n==1:
22 break

23 i f ’ r s s i ’ in s [ 1 ] :
24 r s = s [ 1 ] . s p l i t ( ’ : ’ )
25 print i n t ( r s [ 1 ] )
26
27 t = s [ 0 ] . s p l i t ( )

54
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28 t imes = t [ 1 ] . s p l i t ( ’ : ’ )
29 secTime = f l o a t ( t imes [ 2 ] )
30 secTime += f l o a t ( t imes [ 1 ] ) ∗60
31
32 data_packet = data_msg(50+ in t ( r s [ 1 ] ) , secTime

)
33 sinkData . append ( data_packet )
34
35 #Parse the GPS data , t h i s w i l l g i v e us a bunch o f
36 #l a t t i t u d e s and l on g i t u d e s connect to time va l u e s
37 while gpsF i l e :
38 l i n e = gpsF i l e . r e ad l i n e ( )
39 s = l i n e . s p l i t ( ’ , ’ )
40 n = len ( s )
41 i f n==1:
42 break

43 i f s [ 1 ] == ’$GPGGA’ :
44 t = s [ 0 ] . s p l i t ( )
45 t imes = t [ 1 ] . s p l i t ( ’ : ’ )
46 secTime = f l o a t ( t imes [ 2 ] )
47 secTime += f l o a t ( t imes [ 1 ] ) ∗60
48 s [ 3 ] = f l o a t ( s [ 3 ] )
49 s [ 5 ] = f l o a t ( s [ 5 ] )
50 i f s [ 4 ] == ’S ’ :
51 s [ 3 ] = −s [ 3 ]
52 i f s [ 6 ] == ’W’ :
53 s [ 5 ] = −s [ 5 ]
54 dataPerSecond [ secTime ] = [ ( s [ 3 ] , s [ 5 ] ) , f l o a t (

s [ 9 ] ) ]
55
56 #Ca l cu l a t e a l l o f the d i s t an c e s by comparing each
57 #l a t t i t u d e and l on g i t u d e to the s t a r t i n g coord ina t e s .
58 #Al l o f the t imes are a l s o updated to be an o f f s e t
59 #from the f i r s t time recorded
60 tL i s t = dataPerSecond . keys ( )
61 tL i s t . s o r t ( )
62 f i r s tT ime = tL i s t [ 0 ]
63 data = dataPerSecond [ t L i s t [ 0 ] ]
64 f i r s t P o s = data [ 0 ]
65 f i r s t E r r = data [ 1 ]
66 del dataPerSecond [ t L i s t [ 0 ] ]
67 dataPerSecond [ 0 ] = [ 0 , data [ 1 ] ]
68 del t L i s t [ 0 ]
69 R = 6371
70 for t in t L i s t :
71 newKey = t − f i r s tT ime
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72 data = dataPerSecond [ t ]
73 del dataPerSecond [ t ]
74 pos = data [ 0 ]
75
76 d i s t = np . a r c co s (np . s i n ( f i r s t P o s [ 0 ] ) ∗ np . s i n ( pos

[ 0 ] ) + np . cos ( f i r s t P o s [ 0 ] ) ∗ np . cos ( pos [ 0 ] ) ∗ np .
cos ( f i r s t P o s [1]− pos [ 1 ] ) ) ∗ R

77 d i s t = d i s t /4
78 dataPerSecond [ newKey ] = [ d i s t , data [ 1 ] ]
79
80
81 t imeL i s t = [ 0 ]
82 dataL i s t = [ 1 9 2 ]
83 timeRSSIList = [ ]
84 l e v e l L i s t = [ ]
85
86 #This c r ea t e s two arrays , one o f time va l u e s
87 #the o ther o f RSSI where the t imes are
88 #a l i gned wi th the t imes from the gps
89 for e lements in sinkData :
90 e lements . time = elements . time−f i r s tT ime
91 timeRSSIList . append ( e lements . time )
92 l e v e l L i s t . append ( e lements . r s s i )
93 o r i g t ime = sinkData [ 0 ] . time
94 prevtime = 0
95
96 #This c r ea t e s two arrays , one f o r time
97 #and one f o r data ra t e . The t imes are
98 #a l i gned wi th the gps t imes . The data ra t e
99 #goes in increments o f 192 , which i s the

100 #amount o f data t r an s f e r r e d at every RSSI
101 #measurement
102 for e lements in sinkData :
103 i f e lements . time>len ( t imeL i s t ) :
104 dataL i s t . append (0 )
105 t imeL i s t . append ( f l o o r ( e lements . time ) )
106 else :
107 dataL i s t [ l en ( dataL i s t )−1] += 192
108 l a r g e s tD i s t = 0
109
110 #This c r ea t e s two l i s t s , one f o r d i s t an c e s
111 #and one f o r t imes
112 for time , dat in dataPerSecond . i t e r i t em s ( ) :
113 i f dat [0] > l a r g e s tD i s t :
114 l a r g e s tD i s t=dat [ 0 ]
115 for time , d i s t in dataPerSecond . i t e r i t em s ( ) :
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116 dataPerSecond [ time ] = ( l a r g e s tD i s t−d i s t [ 0 ] , d i s t [1 ]+
f i r s t E r r )

117 tempList = dataPerSecond . items ( )
118 tempList . s o r t ( )
119 times , data = z ip (∗ tempList )
120 d i s tance s , e r r o r = z ip (∗ data )
121 e r r o r = l i s t ( e r r o r )
122 d i s t an c e s = l i s t ( d i s t an c e s )
123 t imes = l i s t ( t imes )
124
125 #the s e th r ee l oops round o f f a l l t he
126 #times to the neare s t second
127 for i in range (0 , l en ( t imes ) ) :
128 t imes [ i ] = round ( t imes [ i ] )
129 for i in range (0 , l en ( t imeL i s t ) ) :
130 t imeL i s t [ i ] = round ( t imeL i s t [ i ] )
131 for i in range (0 , l en ( t imeRSSIList ) ) :
132 timeRSSIList [ i ] = round ( timeRSSIList [ i ] )
133
134 avgRSSI = [ ]
135 for tim in t imes :
136 avgRSSI . append (0 )
137
138 meanQuant = 0
139 timePos = 0
140
141 #This c a l c u l a t e s the average RSSI per second
142 #from a l l the RSSI va l u e s recorded each sec
143 for x in range (0 , l en ( t imes ) ) :
144 i f timePos < len ( t imeRSSIList )−1:
145 while t imeRSSIList [ timePos ] == times [ x ] :
146 meanQuant = meanQuant + 1
147 avgRSSI [ x ] = avgRSSI [ x ] + ( l e v e l L i s t

[ timePos ] )
148 timePos = timePos +1
149 i f timePos == len ( t imeRSSIList ) :
150 break

151 i f meanQuant > 0 :
152 avgRSSI [ x ] = avgRSSI [ x ] / meanQuant
153 meanQuant = 0
154
155 RSSIatDist = [ ]
156 for x in range (0 , 100) :
157 RSSIatDist . append (0 )
158 for x in range (0 , l en ( d i s t an c e s ) ) :
159 d i s t an c e s [ x ] = round ( d i s t an c e s [ x ] )
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160
161 #This now uses the avgRSSI per second and
162 #ca l c u l a t e s the average RSSI per metre
163 meanQuant = 0
164 for x in range (0 ,100) :
165 for i in range (0 , l en ( d i s t an c e s ) ) :
166 i f x == d i s t an c e s [ i ] :
167 print meanQuant
168 RSSIatDist [ x ] = RSSIatDist [ x ] +

avgRSSI [ i ]
169 i f avgRSSI [ i ] >0:
170 meanQuant = meanQuant+1
171 i f meanQuant>0:
172 RSSIatDist [ x ] = RSSIatDist [ x ] / meanQuant
173 meanQuant = 0
174
175 avgData = [ ]
176 for tim in t imes :
177 avgData . append (0 )
178
179 #This c a l c u l a t e s the average data ra t e
180 #per second
181 meanQuant = 0
182 timePos = 0
183 for x in range (0 , l en ( t imes ) ) :
184 i f timePos < len ( t imeL i s t )−1:
185 while t imeL i s t [ timePos ] == times [ x ] :
186 meanQuant = meanQuant + 1
187 avgData [ x ] = avgData [ x ] + ( dataL i s t [

timePos ] )
188 timePos = timePos +1
189 i f timePos == len ( t imeL i s t ) :
190 break

191 i f meanQuant > 0 :
192 avgData [ x ] = avgData [ x ] / meanQuant
193 meanQuant = 0
194
195 DataatDist = [ ]
196 for x in range (0 , 100) :
197 DataatDist . append (0 )
198 for x in range (0 , l en ( d i s t an c e s ) ) :
199 d i s t an c e s [ x ] = round ( d i s t an c e s [ x ] )
200
201 #t h i s t a k e s the data ra t e per second and
202 #t r a n s l a t e s i t i n t o data ra t e at d i s t x
203 meanQuant = 0
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204 for x in range (0 ,100) :
205 for i in range (0 , l en ( d i s t an c e s ) ) :
206 i f x == d i s t an c e s [ i ] :
207 DataatDist [ x ] = DataatDist [ x ] +

avgData [ i ]
208 i f avgData [ i ] >0:
209 meanQuant = meanQuant+1
210 i f meanQuant>0:
211 DataatDist [ x ] = DataatDist [ x ] / meanQuant
212 meanQuant = 0
213
214 #p l o t the data ra t e
215 f i g = p l t . f i g u r e ( f i g s i z e =(24 ,18) )
216 ax1 = f i g . add_subplot (111)
217 ax1 . xax i s . g r i d ( c o l o r=’ gray ’ , l i n e s t y l e=’ s o l i d ’ )
218 ax1 . yax i s . g r i d ( c o l o r=’ gray ’ , l i n e s t y l e=’ s o l i d ’ )
219 p1 = ax1 . bar ( range (0 ,100) , DataatDist , c o l o r=’#2B2B2B ’ )
220 #ax1 . set_yl im (ymin=−42.0)
221 #ax1 . set_yl im (ymax=−32.0)
222 ax1 . s e t_x labe l ( ’ Distance � (m) ’ )
223 # Make the y−ax i s l a b e l and t i c k l a b e l s match the l i n e co l o r

.
224 ax1 . s e t_y labe l ( ’ Throughput� ( Bytes / second ) ’ , c o l o r=’#2B2B2B ’ )
225 for t l in ax1 . g e t_yt i c k l ab e l s ( ) :
226 t l . s e t_co lo r ( ’#2B2B2B ’ )
227
228 #p l o t the RSSI
229 ax2 = ax1 . twinx ( )
230 majorLocator = Mult ip l eLocator (40)
231 ax2 . xax i s . set_major_locator ( majorLocator )
232 minorLocator = Mult ip l eLocator (5 )
233 ax2 . yax i s . set_major_locator ( minorLocator )
234 ax2 . yax i s . g r i d ( c o l o r=’ gray ’ , l i n e s t y l e=’ s o l i d ’ )
235 ax2 . bar ( range (0 ,100) , RSSIatDist , c o l o r=’#EE3A00 ’ )
236 #ax2 . p l o t ( [ 1 , 50 , 200 ] , [ 1 , 2 , 400 ] , ’−−r ’ )
237 ax2 . set_ylim (ymin=0.0)
238 ax2 . set_ylim (ymax=60.0)
239 ax2 . s e t_y labe l ( ’ Average�RSSI� (dBm) ’ , c o l o r=’#EE3A00 ’ )
240 for t l in ax2 . g e t_yt i c k l ab e l s ( ) :
241 t l . s e t_co lo r ( ’ r ’ )
242 p l t . show ( )



Python Scripts 60

Converting Cooja Logs into Throughput

1 import sys
2 import matp lo t l i b . pyplot as p l t
3 from pylab import ∗
4 s i n kF i l e = open ( " . / rad io . txt " , " r " )
5 #r e f F i l e = open (" ./ re ference_data . t x t " , " r ")
6 sinkData = [ ]
7 #refData = [ ]
8 class data_msg ( ob j e c t ) :
9 def __init__( s e l f , type=0, p r i o r i t y =0, hopcount=0,

de lay=0, seq_no=0, data =[ ] , time=0) :
10 s e l f . type = type
11 s e l f . p r i o r i t y = p r i o r i t y
12 s e l f . hopcount = hopcount
13 s e l f . de lay = delay
14 s e l f . seq_no = seq_no
15 s e l f . data = data
16 s e l f . time = time
17
18 #parse the s ink f i l e to g e t data t h i s
19 #i s a c t u a l l the rad io l o g
20 while s i n kF i l e :
21 l i n e = s i n kF i l e . r e ad l i n e ( )
22 s = l i n e . s p l i t ( ’ \ t ’ , 4 )
23 n = len ( s )
24 i f n==1:
25 break

26 i f l en ( s [ 3 ] ) >90:
27 x = x+1
28 secTime=in t ( s [ 0 ] ) /1000
29 data_packet = data_msg ( 0 , 0 , 0 , 0 , 0 , [ ] ,

f l o o r ( secTime ) )
30 sinkData . append ( data_packet )
31 t imeL i s t = [ 6 4 ]
32 l e v e l L i s t = [ ]
33 or i g t ime = sinkData [ 0 ] . time
34 prevtime = 0
35
36 #increa se the ra t e by 64 f o r each packe t sen t
37 #in a g iven second . (64 = 192/3) because the r e
38 #are 3 f r a c t u r ed packe t s sen t by Cooja f o r every
39 #192 packe t send .
40 for e lements in sinkData :
41 e lements . time = elements . time−or i g t ime
42 i f prevtime<elements . time :
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43 t imeL i s t . append (64)
44 prevtime = elements . time
45 else :
46 t imeL i s t [ l en ( t imeL i s t )−1] += 64
47
48 #pr in t the graph
49 f i g = p l t . f i g u r e ( f i g s i z e =(5 ,3) )
50 f i g . subplots_adjust ( bottom=0.17)
51 f i g . subplots_adjust ( l e f t =0.15)
52 ax1 = f i g . add_subplot (111)
53 ax1 . xax i s . g r id ( c o l o r=’ gray ’ , l i n e s t y l e=’ s o l i d ’ )
54 ax1 . yax i s . g r id ( c o l o r=’ gray ’ , l i n e s t y l e=’ s o l i d ’ )
55 ax1 . p l o t ( range (0 , i n t ( l en ( t imeL i s t ) ) ) , t imeList , ’−r ’ )
56 ax1 . s e t_x labe l ( ’ time� ( s ) ’ )
57 # Make the y−ax i s l a b e l and t i c k l a b e l s match the l i n e co l o r

.
58 ax1 . s e t_y labe l ( ’ speed � ( bytes / sec ) ’ , c o l o r=’#2B2B2B ’ )
59 for t l in ax1 . g e t_yt i c k l ab e l s ( ) :
60 t l . s e t_co lo r ( ’#2B2B2B ’ )
61
62 p l t . show ( )
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Converting Printed Data into Throughput

1 import sys
2 import matp lo t l i b . pyplot as p l t
3 from pylab import ∗
4 s i n kF i l e = open ( " . / s ink . txt " , " r " )
5 sinkData = [ ]
6 class data_msg ( ob j e c t ) :
7 def __init__( s e l f , type=0, p r i o r i t y =0, hopcount=0,

de lay=0, seq_no=0, data =[ ] , time=0) :
8 s e l f . type = type
9 s e l f . p r i o r i t y = p r i o r i t y

10 s e l f . hopcount = hopcount
11 s e l f . de lay = delay
12 s e l f . seq_no = seq_no
13 s e l f . data = data
14 s e l f . time = time
15 x=0
16
17 #parse l o g f i l e to g e t out in format ion
18 while s i n kF i l e :
19 l i n e = s i n kF i l e . r e ad l i n e ( )
20 s = l i n e . s p l i t ( ’ , ’ , 2 )
21 n = len ( s )
22 i f n==1:
23 break

24 i f l en ( s [ 1 ] ) >90:
25 x = x+1
26 t = s [ 0 ] . s p l i t ( )
27 t imes = t [ 1 ] . s p l i t ( ’ : ’ )
28 secTime = f l o a t ( t imes [ 2 ] )
29 secTime += f l o a t ( t imes [ 1 ] ) ∗60
30 secTime += f l o a t ( t imes [ 0 ] ) ∗3600
31 data_packet = data_msg ( 0 , 0 , 0 , 0 , 0 , [ ] ,

secTime )
32 for i in range (18 , 98) :
33 i f i%2 == 0 :
34 data_packet . data .

append ( i n t ( s [ 1 ] [ i
: i +2] ,16) )

35 sinkData . append ( data_packet )
36 t imeL i s t = [ 4 8 ]
37 l e v e l L i s t = [ ]
38 or i g t ime = sinkData [ 0 ] . time
39
40 #Each item in l i s t r e p r e s en t s 1 WildSensing
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41 #data packe t so increment the data per sec
42 #by 48 each time
43 prevtime = 0
44 for e lements in sinkData :
45 e lements . time = elements . time−or i g t ime
46 i f e lements . time>len ( t imeL i s t ) :
47 t imeL i s t . append (48)
48 prevtime = elements . time
49 else :
50 t imeL i s t [ l en ( t imeL i s t )−1] += 48
51
52 #Print the graph
53 f i g = p l t . f i g u r e ( f i g s i z e =(5 ,3) )
54 f i g . subplots_adjust ( bottom=0.17)
55 f i g . subplots_adjust ( l e f t =0.15)
56 ax1 = f i g . add_subplot (111)
57 ax1 . xax i s . g r id ( c o l o r=’ gray ’ , l i n e s t y l e=’ s o l i d ’ )
58 ax1 . yax i s . g r id ( c o l o r=’ gray ’ , l i n e s t y l e=’ s o l i d ’ )
59 ax1 . p l o t ( range (0 , i n t ( l en ( t imeL i s t ) ) ) , t imeList , ’−r ’ )
60 ax1 . s e t_x labe l ( ’ time� ( s ) ’ )
61 # Make the y−ax i s l a b e l and t i c k l a b e l s match the l i n e co l o r

.
62 ax1 . s e t_y labe l ( ’ speed � ( bytes / sec ) ’ , c o l o r=’#2B2B2B ’ )
63 for t l in ax1 . g e t_yt i c k l ab e l s ( ) :
64 t l . s e t_co lo r ( ’#2B2B2B ’ )
65
66 p l t . show ( )
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